Designing Security Systems for Biometric Authentication

Biometrics, the statistical study of biological phenomena, has been used for more than 100 years in law enforcement for the identification of criminals, most notably through the use of fingerprints. Recently, electronic biometric analysis has become fast enough and devices to implement it small enough for use in commercial authentication products. Several types of biometric devices are available today, including:

- Fingerprint matching
- Retinal scan
- Face scan, and
- Handprint.

Research is even underway to develop a DNA authentication device on a chip.

The data that is distilled from biometric authentication devices is referred to as authentication material. A password is a type of authentication material consisting of user entered text.

Password Problems

Passwords are inferior to biometric methods of authentication for several reasons, including:

- They are often written down in unsecured locations,
- They may be given away,
- If not carefully chosen, they are easily guessed,
- They are often forgotten,
- System administrator’s can be tricked into revealing them by social engineering.

Biometric authentication material, such as a fingerprint, cannot be forgotten, loaned to another person and is usually difficult, if not impossible, to change.

Authentication Costs

It is estimated that the annual cost of password maintenance on internal IT systems for companies is between US$100 and $300 per year, per user. Several companies have tried to develop systems to reduce this, in an attempt to achieve the holy grail of password administration – single sign-on – a single password or biometric authentication type that controls user access to all of an organization’s systems. Rather than having different authentication and access systems for a company database, payroll system, accounting system, and distribution system, a single sign-on system would allow centralized administration while interfacing transparently with all of the internal systems.

Standards such as kerberos have been around for years but have failed to gain traction in the market. Single sign-on systems are very complex because they must interface with various, non-standard legacy systems. Interfacing to each of them.
these systems may involve significant development costs.

Biometric authentication methods can be used as part of a single sign-on system, but they only replace the password and do not alleviate all of the complex interfacing with disparate systems that is required to implement single sign-on. Biometric authentication may be more secure, but it does not solve the cost problems.

Enrollment

All authentication services require enrollment. A new user must be identified, an account must be set up, and the authentication data must be associated with this account. This is the process of enrollment, and it is required whether a traditional password or a more advanced system is used.

Enrollment is often a weak link in an authentication system. Social Engineering can be used to persuade a person that an account should be set up, that a password should be reset, or that additional account privileges should be granted.

Enrollment is necessary because authentication does not necessarily provide identification. You can say that a fingerprint left at a crime scene is the same as the one left on a glass at a restaurant, but you still do not know whose fingerprint it is. You must identify the person and tie them to the fingerprint.

Biometric authentication only indicates that the biometric material presented at authentication is the same biometric material that was presented during enrollment. Identification of the person being enrolled must be done when the original authentication material is stored in the database. This issue must be resolved through administration of the enrollment process by a trusted third party.

For example, if a company wishes to enroll employees into an authentication service with biometric material, the Human Resources department could be entrusted with enrollment. It would be their responsibility to positively identify each employee assigning them any access privileges.

Supervision of enrollment is necessary to ensure that stored authentication material is valid. Only then can transactions authenticated by it be trusted. The level of trust required during enrollment is directly proportional to the level of transactions that will be executed using this authentication system.

For example, to create an account on America Online, all you need is one of the handy coasters that the AOL marketing department is constantly mailing out and giving away at retail points of sale. Signing on is simply a matter of inserting the disk or CD and typing a screen name such as JohnDoe358. This is now your official AOL screen name. Authentication merely requires access to this screen name and a password. AOL has no idea if you are really John Doe, his 8-year-old son or someone who saw the name and password on a sticky-note on a computer screen. Enrollment data such as credit card numbers and street addresses are not secure when transmitted over an Internet connection.

This weak enrollment system can be justified because AOL has only the $9.95 monthly fee at risk if you are not who you say you are and you therefore contest the charge on your credit card. In many other cases, such as large on-line sales, such as B2B equipment purchases, transactions can be worth millions of dollars and therefore authentication must be much more secure. For authentication to be fully trusted, the enrollment process must be provably secure.

Protecting Authentication

Securing authentication material starts at enrollment and continues on through transmission to a storage facility, storage and later retrieval. It must be protected at all points of the system in order to guard against attacks such as replay, authentication material theft, and potential alteration of data.

Most authentication systems involve three parties:
1. The user being authenticated,
2. The service provider, and
3. The authenticator.

A complete authentication system protects all three parties of a transaction and guards against possible compromise of the system from within any of the three parties. With a three-party authentication service, the transaction cannot be broken without collaboration by at least two of the parties. This makes the system more robust and allows for a high degree of certainty that the authentication event actually identifies the user.

Securing Authentication Services

The authentication service provider must design their authentication system so that no system administrator can have access to authentication material. Password systems often solve this problem by storing passwords only in an encrypted form. When users enter a password, their input is encrypted and compared with the stored, encrypted password.

For biometric data, security can be accomplished by splitting the authentication material and storing it in multiple databases, using algorithms chosen for speed and security. Splitting for storage and recombination for authentication should be done only on a highly secure system.

One solution that is often chosen is to use a commercial, certified secure operating system. However, a more secure approach is to design a computer system that does not have a user shell, or any remote access except through the authentication application, eliminating all static internal storage such as a hard-drive and flash-memory.

The system that Ethentica has designed boots from a CD and configures itself to the other nodes in the system at run-time. The only place that the authentication material appears whole and unencrypted is in memory on the cryptographic node for a moment of time. During enrollment the software splits the incoming data and purges the original from memory. During authentication, the software combines parts of the stored data for comparison with the authentication material delivered by the client and
returns only an answer (i.e. it either
matches or it does not). Once data comes
into the system at enrollment, it never
leaves.

Security of the split databases can be
provided in several ways. Each database
can have different passwords and admin-
istrators, though moving the databases to
g eo graphically separate data centers
with different systems administrators
may be easier to implement from a
human standpoint. Security policies and
procedures can be broken. If two system
administrators have access to a system,
they are likely to provide backup for
each other and can break the security
model by trading access passwords. The
ideal situation would be separate data
centers hosted by different companies.
That way, in addition to the policies put
into place, the possibility of a system
administrator gaining access to both
pieces of the key can be minimized.
Another method to increase the security
is to cryptographically split the data into
more than two pieces and store them in
more than two data centers.

Secure Transmission

Once the authenticated material is
securely encrypted and stored, the data
must be delivered to the authentication
provider in a secure manner. Communi-
cations among all parties in the transac-
tion should be encrypted. In addition to
encrypting the transmissions, the authen-
tication material can be super-encrypted
within the data stream.

Super-encryption is used to describe
the encryption of the authentication material
within the encrypted digital transmis-
sion. This data is never seen by adminis-
trators. The authentication system stores
the biometric material and compares it to
biometric material gathered at an authen-
tication event. The material is only
decrypted in the cryptographic engine and
only exists in memory long enough
to make a comparison with the stored
material. This is to ensure that no admin-
istrator can reproduce the original mate-
rial unless they were to compromise
multiple data centers (databases).

The datastream is encrypted with SSL.
However, due to known flaws in SSL,
we chose to further encrypt the biometric
authentication material using PKCS #7.
In this way, we can be sure that only the
final destination, the cryptographic
device controlled by the authentication
provider, can decrypt it.

Another reason to super-encrypt biomet-
ric authentication data is so that other
machines within the authentication
server cluster and the network connect-
ing the cluster do not have unencrypted
material where system administrators
might be able to obtain it.

There are connections among all three
parties during an authentication transac-
tion. The data flow should be designed to
further enhance the security of the system.
For example, the authentication material
should pass directly from the client to the
authentication service, so that a dishonest
party at the transaction vendor cannot
record the data passing by on the network
and attempt a replay attack. Similarly, the
transaction vendor should begin the
transaction and initiate contact with the
authentication provider so that a client
cannot execute a replay attack.

Figure 1 illustrates the three party client
server architecture and some of the
security that protects data in transit
among the three parties.

Conclusions

Security and vigilance against outside
attack must be designed into an authenti-
cation service at every point in the system.
Multi-layered security through carefully
designed data flow, encryption at all
stages of communication, and imple-
mentation of strict policies and proce-
dures is required to build a secure
service.

An authentication system must have a
trusted enrollment system, and each
authentication must protect the client,
the authenticator and the service provider.
Because biometric authentication material
is more permanent than passwords,
greater care must be taken to protect it
from internal and external threats at all
points in the system. Equal care must be
taken to secure data in motion as is done
to secure data at rest within the system.

Glossary

Secure Sockets Layer (SSL) • A protocol
designed by Netscape Communications
Corporation to provide encrypted com-
munications on the Internet. SSL is lay-
ered beneath application protocols such
as HTTP, SMTP, Telnet, FTP, Gopher,
and NNTP and above the connection
protocol TCP/IP. It is used by the HTTPS
(secure http) access method.

kerberos • The authentication system of
MIT’s Project Athena. It is based on
symmetric key cryptography. Adopted
by OSF as the basis of security for DME.

Public Key Cryptography Standards
(PKCS) • Public-Key Cryptography
Standards are produced by RSA Labora-
tories in cooperation with secure systems
developers worldwide for the purpose of
accelerating the deployment of public-key
cryptography.

PKCS #7 • Cryptographic Message
Syntax Standard. This standard
describes a general syntax for data that
may have cryptography applied to it,
such as digital signatures and digital
envelopes.

About Ethenticator

Ethenticator’s primary hardware product,
the Ethenticator 3000 is a PCMCIA card
incorporating a fingerprint sensor,
designed to be installed in laptop com-
puters, which are often used remotely.
Fingerprints are reduced from an image
captured at the CCD (Charge Coupled
Device) to a small template that can later
be compared to templates generated by
the same finger, even if the original
image is different – for example, if a
finger is placed at different angles. This
company’s primary software product,
the Trust Engine, is a 16-node multipl-
redundant server cluster that incorporates
many of the security concepts discussed
in this article. The Trust Engine is
deployed in four data centers, and bio-
metric material is cryptographically split
into four parts, of which any two can
reproduce the original material.
Biometric devices such as these will
work their way into the PDA and Wire-
less phone market as demand for secure
m-commerce functions using these
clients increases.
Figure 1: Three-Party Client Server Architecture

The person executing a transaction using a Fingerprint Sensor or other biometric device.

Database 1

Database 2

SSL

PKCS #7 Encrypted biometric datastream

Internet

SSL

Encryption transaction datastream

SSL

Gateway

SSL

Authentication Service Provider

Secure storage and retrieval system that splits authentication material into multiple databases and communicates securely with all parties.

Authentication answer indicating match or mismatch of data

Transaction Vendor

The party making the sale or allowing access to a system.

About the Author

Aaron Brooks is currently Director of Software Development for Ethentica. He has over 10 years of Information Technology experience in Telecommunications, B2B Transaction processing, and E-Commerce industries. Aaron has built several high volume E-Commerce clusters using various dynamic web development technologies. At Ethentica, Aaron manages the software development group that designed, developed and implemented the Trust Engine authentication cluster. The Trust Engine's primary biometric device is the Ethenticator 3000, but it is capable of implementing any type of authentication material from any biometric vendor.